• Microbes in ocean play important role in

    From ScienceDaily@1337:3/111 to All on Mon Jun 14 21:30:44 2021
    Microbes in ocean play important role in moderating Earth's temperature


    Date:
    June 14, 2021
    Source:
    Harvard University, Department of Organismic and Evolutionary
    Biology
    Summary:
    A new study uncovers where much of the carbonate consumption in
    the deep sea is happening - a process that prevents its escape
    into Earth's atmosphere. Researchers collected and examined
    methane-eating microbes from seven geologically diverse seafloor
    seeps and found that the carbonate rocks from all sites host
    methane-oxidizing microbial communities with the highest rates of
    methane consumption.



    FULL STORY ========================================================================== Methane is a strong greenhouse gas that plays a key role in Earth's
    climate.

    Anytime we use natural gas, whether we light up our kitchen stove or
    barbeque, we are using methane.


    ==========================================================================
    Only three sources on Earth produce methane naturally: volcanoes,
    subsurface water-rock interactions, and microbes. Between these three
    sources, most is generated by microbes, which have deposited hundreds
    of gigatons of methane into the deep seafloor. At seafloor methane
    seeps, it percolates upwards toward the open ocean, and microbial
    communities consume the majority of this methane before it reaches the atmosphere. Over the years, researchers are finding more and more methane beneath the seafloor, yet very little ever leaves the oceans and gets
    into the atmosphere. Where is the rest going? A team of researchers
    led by Jeffrey J. Marlow, former postdoctoral researcher in Organismic
    and Evolutionary Biology at Harvard University, discovered microbial communities that rapidly consume the methane, preventing its escape
    into Earth's atmosphere. The study published in Proceedings of the
    National Academy of Sciences collected and examined methane-eating
    microbes from seven geologically diverse seafloor seeps and found,
    most surprisingly, that the carbonate rocks from one site in particular
    hosts methane-oxidizing microbial communities with the highest rates of
    methane consumption measured to date.

    "The microbes in these carbonate rocks are acting like a methane
    bio filter consuming it all before it leaves the ocean," said senior
    author Peter Girguis, Professor of Organismic and Evolutionary Biology,
    Harvard University.

    Researchers have studied microbes living in seafloor sediment for decades
    and know these microbes are consuming methane. This study, however,
    examined microbes that thrive in the carbonate rocks in great detail.

    Seafloor carbonate rocks are common, but in select locations, they form
    unusual chimney-like structures. These chimneys reach 12 to 60 inches
    in height and are found in groups along the seafloor resembling a stand
    of trees. Unlike many other types of rocks, these carbonate rocks are
    porous, creating channels that are home to a very dense community of methane-consuming microbes. In some cases, these microbes are found in
    much higher densities within the rocks than in the sediment.

    During a 2015 expedition funded by the Ocean Exploration Trust, Girguis discovered a carbonate chimney reef off the coast of southern California
    at the deep sea site Point Dume. Girguis returned in 2017 with funding
    from NASA to build a sea floor observatory. Upon joining Girguis's lab,
    Marlow, currently Assistant Professor of Biology at Boston University,
    was studying microbes in carbonates. The two decided to conduct a
    community study and gather samples from the site.



    ==========================================================================
    "We measured the rate at which the microbes from the carbonates eat
    methane compared to microbes in sediment," said Girguis. "We discovered
    the microbes living in the carbonates consume methane 50 times faster than microbes in the sediment. We often see that some sediment microbes from methane-rich mud volcanoes, for example, may be five to ten times faster
    at eating methane, but 50 times faster is a whole new thing. Moreover,
    these rates are among the highest, if not the highest, we've measured anywhere." "These rates of methane oxidation, or consumption, are really extraordinary, and we set out to understand why," said Marlow.

    The team found that the carbonate chimney sets up an ideal home for
    the microbes to eat a lot of methane really fast. "These chimneys
    exists because some methane in fluid flowing out from the subsurface is transformed by the microbes into bicarbonate, which can then precipitate
    out of the seawater as carbonate rock," said Marlow. "We're still trying
    to figure out where that fluid -- and its methane -- is coming from."
    The micro-environments within the carbonates may contain more methane
    than the sediment due to its porous nature. Carbonates have channels
    that are constantly irrigating the microbes with fresh methane and other nutrients allowing them to consume methane faster. In sediment, the
    supply of methane is often limited because it diffuses through smaller,
    winding channels between mineral grains.

    A startling find was that, in some cases, these microbes are surrounded
    by pyrite, which is electrically conductive. One possible explanation
    for the high rates of methane consumption is that the pyrite provides
    an electrical conduit that passes electrons back and forth, allowing
    the microbes to have higher metabolic rates and consume methane quickly.



    ========================================================================== "These very high rates are facilitated by these carbonates which provide a framework for the microbes to grow," said Girguis. "The system resembles
    a marketplace where carbonates allow a bunch of microbes to aggregate
    in one place and grow and exchange -- in this case, exchange electrons
    -- which allows for more methane consumption." Marlow agreed, "When
    microbes work together they're either exchanging building blocks like
    carbon or nitrogen, or they're exchanging energy. And one kind of way
    to do that is through electrons, like an energy currency. The pyrite interspersed throughout these carbonate rocks could help that electron
    exchange happen more swiftly and broadly." In the lab, the researchers
    put the collected carbonates into high pressure reactors and recreated conditions on the sea floor. They gave them isotopically labeled methane
    with added Carbon-14 or Deuterium (Hydrogen-2) in order to track methane production and consumption. The team next compared the data from Point
    Dume to six additional sites, from the Gulf of Mexico to the coast of
    New England. In all locations, carbonate rocks at methane seeps contained methane- eating microbes.

    "Next we plan to disentangle how each of these different parts of the carbonates -- the structure, electrical conductivity, fluid flow, and
    dense microbial community -- make this possible. As of now, we don't
    know the exact contribution of each," said Girguis.

    "First, we need to understand how these microbes sustain their
    metabolic rate, whether they're in a chimney or in the sediment. And
    we need to know this in our changing world in order to build our
    predictive power," said Marlow. "Once we clarify how these many
    interconnected factors come together to turn methane to rock,
    we can then ask how we might apply these anaerobic methane-eating
    microbes to other situations, like landfills with methane leaks." ========================================================================== Story Source: Materials provided by Harvard_University,_Department_of_Organismic_and
    Evolutionary_Biology. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Jeffrey J. Marlow, Daniel Hoer, Sean P. Jungbluth, Linda M. Reynard,
    Amy
    Gartman, Marko S. Chavez, Mohamed Y. El-Naggar, Noreen Tuross,
    Victoria J. Orphan, Peter R. Girguis. Carbonate-hosted microbial
    communities are prolific and pervasive methane oxidizers at
    geologically diverse marine methane seep sites. Proceedings of
    the National Academy of Sciences, 2021; 118 (25): e2006857118 DOI:
    10.1073/pnas.2006857118 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/06/210614185551.htm

    --- up 5 weeks, 3 days, 22 hours, 45 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)