• Brain capillary structures show a correl

    From ScienceDaily@1337:3/111 to All on Mon Jun 14 21:30:42 2021
    Brain capillary structures show a correlation with their neuron
    structures

    Date:
    June 14, 2021
    Source:
    Tokyo Metropolitan Institute of Medical Science
    Summary:
    Researchers performed microtomography experiments the BL20XU
    beamline of the SPring-8 synchrotron radiation facility and found
    that brain capillary structures show a correlation with their
    neuron structures.



    FULL STORY ==========================================================================
    Drs. Itokawa, Mizutani and colleagues performed microtomography
    experiments the BL20XU beamline of the SPring-8 synchrotron radiation
    facility and found that brain capillary structures show a correlation
    with their neuron structures.


    ========================================================================== Brain blood vessels constitute a micrometer-scale vascular network
    responsible for supply of oxygen and nutrition. In this study, we analyzed cerebral tissues of the anterior cingulate cortex and superior temporal
    gyrus of schizophrenia cases and age/gender-matched controls by using synchrotron radiation microtomography or micro-CT in order to examine
    the three-dimensional structure of cerebral vessels.

    All post-mortem human cerebral tissues were collected with informed
    consent from the legal next of kin using protocols approved by the
    Clinical Study Reviewing Board of Tokai University School of Medicine (application no. 07R- 018) and the Ethics Committee of Tokyo Metropolitan Institute of Medical Science (approval no. 17-18). This study was
    conducted according to the Declaration of Helsinki under the approval
    of the Ethics Committee for the Human Subject Study of Tokai University (approval nos. 11060, 11114, 12114, 13105, 14128, 15129, 16157, 18012,
    19001, 20021, and 20022). The schizophrenia patients S1-S4 and control
    cases N1-N4 of this study are the same as those analyzed in our previous
    report on neuron structure. Cerebral tissues of Brodmann area 22 (BA22)
    of the superior temporal gyrus and BA24 of the anterior cingulate cortex
    were collected from the left hemispheres of the post-mortem brains and subjected to Golgi impregnation. The Golgi-stained tissues were then
    embedded in borosilicate glass capillaries using epoxy resin.

    Three-dimensional structures of blood vessel networks in the brain tissues
    of BA22 of the superior temporal gyrus and BA24 of the anterior cingulate cortex were visualized by using synchrotron radiation microtomography
    or micro-CT.

    Over 1 m of cerebral blood vessels was traced to build
    Cartesian-coordinate models, which were then used for calculating
    structural parameters including the diameter and curvature of the vessels.

    The curvature plot illustrates a significant correlation of the mean
    curvature of capillary vessels to that of neurites (Spearman's r = 0.63, p
    = 0.011, n = 16), indicating that the brain tissues with tortuous neuronal networks have tortuous capillary vessels. No significant difference in
    the slope was observed between the schizophrenia and control groups. The
    mean capillary curvature showed a difference in its variance between
    brain areas. The capillary curvatures of BA22 were widely distributed,
    while those of BA24 were limited to a confined range, resulting in a significant difference in variance (p = 0.019, Bartlett's test, n =
    8). We also examined the relation between the capillary diameter and
    neurite thickness radius. In contrast to the curvature correlation,
    the mean capillary diameter showed no correlation with the neurite
    thickness radius, but was rather constant regardless of neurite
    thickness. This result indicates that the capillary vessel size is
    determined independently of the neuron structure.

    Our previous studies indicated that the neurites of schizophrenia cases
    are thin and tortuous compared to controls. The curved capillaries with
    a constant diameter should occupy a nearly constant volume, while neurons suffering from neurite thinning should have reduced volumes, resulting in
    a volumetric imbalance between the neurons and the vessels. We suggest
    that the observed structural correlation between neurons and blood
    vessels is related to neurovascular abnormalities in schizophrenia.

    Kraepelin placed schizophrenia in a chapter on metabolic disorders in the
    fifth edition of his Psychiatrie published in 1896. He predicted metabolic disfunction and neuropathological change as the basis of schizophrenia. we
    can regard the above-mentioned results as the first example suggesting metabolic abnormality due to capillary and neuron imbalance.

    ========================================================================== Story Source: Materials provided by Tokyo_Metropolitan_Institute_of_Medical_Science. Note: Content may be
    edited for style and length.


    ========================================================================== Journal Reference:
    1. Rino Saiga, Masayuki Uesugi, Akihisa Takeuchi, Kentaro Uesugi,
    Yoshio
    Suzuki, Susumu Takekoshi, Chie Inomoto, Naoya Nakamura, Youta
    Torii, Itaru Kushima, Shuji Iritani, Norio Ozaki, Kenichi Oshima,
    Masanari Itokawa, Makoto Arai, Ryuta Mizutani. Brain capillary
    structures of schizophrenia cases and controls show a correlation
    with their neuron structures. Scientific Reports, 2021; 11 (1)
    DOI: 10.1038/s41598-021- 91233-z ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/06/210614131234.htm

    --- up 5 weeks, 3 days, 22 hours, 45 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)