• Variances in critical protein may guide

    From ScienceDaily@1337:3/111 to All on Tue Mar 23 21:30:34 2021
    Variances in critical protein may guide fate of those infected with SARS
    CoV-2

    Date:
    March 23, 2021
    Source:
    Arizona State University
    Summary:
    Why does COVID-19 seem to strike in such a haphazard way, sometimes
    sparing the 100-year-old grandmother, while killing healthy young
    men and women in the prime of life? A new study may offer some
    tentative clues.

    The research explores MHC-I, a critical protein component of the
    human adaptive immune system.



    FULL STORY ==========================================================================
    Of the many perplexing questions surrounding SARS CoV-2, a mysterious
    new pathogen that has killed an estimated 2.6 million people worldwide,
    perhaps the most insistent is this: why does the illness seem to strike
    in such a haphazard way, sometimes sparing the 100 year old grandmother,
    while killing healthy young men and women in the prime of life?

    ==========================================================================
    A new study by Karen Anderson, Abhishek Singharoy and their colleagues
    at the Biodesign Institute at Arizona State University, may offer some tentative clues. Their research explores MHC-I, a critical protein
    component of the human adaptive immune system.

    The research suggests that certain variant forms of MHC-I can help
    protect the body, by stimulating a strong immune response, while others
    may leave an individual susceptible to viral assault, severe illness
    and possibly, death.

    "The implication of our findings is that the capacity to mount a
    strong and diverse T cell response to SARS-CoV-2 may be important to
    limit disease severity," Anderson says. "The key to this work is using
    protein structure to predict individual MHC-I peptide binding capacity." Anderson is researchers at the Biodesign Virginia G. Piper Center for Personalized Diagnostics and professor at ASU's School of Life Sciences.

    Singharoy is a researcher in the Biodesign Center for Applied Structural Discovery and assistant professor at ASU's School of Molecular Sciences.

    Cellular police Humans, like all vertebrates, carry MHC-I molecules in
    all nucleated cells. A central role of MHC-I is to help the body clear infections from viruses and other pathogens. It does this by gathering fragments of the virus, ferrying them to the cell surface and presenting
    them to immune agents known as CD8+ T cells, which ceaselessly patrol
    the body.



    ========================================================================== MHC-I however, is a polymorphic molecule, meaning that it occurs in a
    wide variety of forms, which differ markedly in their ability to bind
    viral fragments and present them for interrogation by T cells. Depending
    on which MHC-I variants or alleles are present, the body may mount a
    successful immune response to SARS CoV-2, or may fail to do so, leaving
    the body vulnerable.

    In new research appearing in the journal Cell Reports Medicine, Anderson, Singharoy and their colleagues describe a sophisticated algorithm known as EnsembleMHC, designed to predict which MHC-I alleles are best at binding
    viral fragments and presenting them to T cells. They also identify 108
    viral peptides derived from SARS CoV-2 structural proteins, believed to
    be potent stimulators of the immune response.

    "This is one of the first examples of molecular epidemiology with the
    SARS-CoV2 spike," says Singharoy. The scaling from molecular properties
    to population properties, developed by (first author) Eric Wilson is
    quite novel." Wilson is a researcher at the Biodesign Institute and
    ASU's School of Molecular Sciences.

    Range of effects The research examines 52 common MHC-I alleles and finds significant disparities in their ability to bind viral fragments derived
    from the full SARS CoV- 2 genome as well as fragments derived from a
    key subset of structural components believed to be the most important
    viral proteins for generating robust immune responses. These essential
    proteins help the virus assemble 4 critical structures and are known as
    the S (Spike), N (Nucleocapsid), M (Membrane), and E (Envelope) proteins.



    ==========================================================================
    CD8+ T cells are able to recognize docking regions on these structural proteins, known as epitopes. When these patrolling immune cells encounter
    S, N, M and E proteins, they will usually target the infected cell
    for destruction.

    When the researchers compared COVID-19 figures from 23 countries, they
    found that mortality rates from the disease were closely associated with
    the distribution of MHC-I variants. Specifically, populations rich in
    MHC-I alleles ranked as strong binders of SARS CoV-2 peptide fragments
    showed reduced rates of death from COVID-19, suggesting these favorable
    MHC-I alleles generate a robust immune response when they encounter the
    novel coronavirus.

    The work has important implications for monitoring vulnerability to
    COVID-19 in both individuals and populations and can also help researchers ferret out the essential pieces of the SARS CoV-2 pathogen that best
    stimulate the immune response, a critical component in future vaccines.

    Defensive measures MHC-I molecules are generated by the MHC gene,
    which is the most polymorphic part of the entire human genome. MHC is
    known to encode over 160 proteins of diverse function, half of which are directly involved in immune responses. The enormous diversity of MHC-I
    proteins provide the body with a formidable early warning defense system, capable of binding a broad range of pathogen fragments and fine-tuning
    the immune response. The rich diversity of MHC-I molecules also makes
    it difficult for a foreign invader like a virus to stealthily outwit
    all of the potential binding molecules.

    The CD8+ T cells conducting their surveillance have an uncanny ability to distinguish self from non-self. If the T cells don't like what they see,
    when antigen-presenting MHC-I molecules display the fragments they have acquired, the CD8+ T cells will terminate the infected cell.

    Previous research has shown that even slight amino acid variances in
    MHC- I composition can have profound effects. On the one hand, some
    MHC-I forms may promote inflammatory and autoimmune diseases, such as
    Graves's disease, psoriasis, rheumatoid arthritis, or multiple sclerosis,
    in which healthy tissues are recognized as foreign. On the other hand,
    MHC-I variants may be structurally unequipped to bind the proper fragments
    of a virus or other pathogen and fail to mount an immune response. For
    this reason, MHC genotype is considered a critical determinant of patient outcomes following a range of viral infections.

    MHC-I also plays an important role in cases of tissue transplantation,
    as its full name -- major histocompatibility complex -- suggests. If
    donated tissue is not compatible with the recipient, MHC-I molecules
    present fragments from the donor tissue, which are recognized as foreign
    and attacked by T cells, a phenomenon known as graft-host rejection,
    another form of autoimmunity.

    Following the trail of protection In the current study, researchers
    examined 52 common alleles of the MHC- I protein, using a custom-designed algorithm known as EnsembleMHC to predict their binding affinities for
    SARS CoV-2 protein fragments. Two sets of data were compiled, the first, measuring each allele's binding affinity for the complete repertoire
    of proteins in the SARS CoV-2 genome. The second data set examines the
    binding affinities of each allele to just the S, N, M and E structural
    viral peptide candidates.

    The researchers then mined a massive data bank of protein alleles,
    matching the prevalence of the 52 alleles in the study with 23
    counties. Each country received a population-wide score, which combines
    the MHC-I binding capacity with MHC-I allele frequencies.

    A compelling correlation was found between countries with lower mortality
    rates during the January-April, 2020 study period and high population-wide percentages of alleles identified by EnsembleMHC as strong binding
    molecules for SARS CoV-2 proteins.

    Further, when only those alleles exhibiting high binding affinity for
    the S, N, M, and E proteins were compared, the association between
    low COVID-19 mortality and this suite of favorable MHC-I alleles was
    strongest, again suggesting that the virus's structural proteins are
    the most effective in producing an immune response.

    The findings suggest that patients who have MHC-I alleles capable of
    engaging with SARS-CoV-2 structural protein peptides may stimulate an
    enhanced CD8+ T cell response, with improved post-infection outcomes
    and lower mortality.

    The powerful technique described in the new study further unveils the
    subtle relationship of MHC-I alleles and immune response and will help researchers pinpoint the most important immunogenic viral fragments from
    SARS CoV-2, aiding future vaccine development. Combining such information
    with patient clinical data and genetic profiles may help identify those
    at greatest risk for this still-elusive disease.

    ========================================================================== Story Source: Materials provided by Arizona_State_University. Original
    written by Richard Harth. Note: Content may be edited for style and
    length.


    ========================================================================== Journal Reference:
    1. Eric A. Wilson, Gabrielle Hirneise, Abhishek Singharoy, Karen S.

    Anderson. Total predicted MHC-I epitope load is inversely associated
    with population mortality from SARS-CoV-2. Cell Reports Medicine,
    2021; 2 (3): 100221 DOI: 10.1016/j.xcrm.2021.100221 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/03/210323103838.htm

    --- up 14 weeks, 6 hours, 57 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)