• New stem cell therapy in dogs -- a break

    From ScienceDaily@1337:3/111 to All on Wed Feb 3 21:30:40 2021
    New stem cell therapy in dogs -- a breakthrough in veterinary medicine


    Date:
    February 3, 2021
    Source:
    Osaka Prefecture University
    Summary:
    Scientists have developed a novel method to induce stem cell
    generation from the blood samples of dogs. Through this technique,
    the scientists hope to advance regenerative therapies in veterinary
    medicine. This would mean that, in the near future, veterinarians
    might be able to reverse conditions in dogs that were previously
    thought incurable.



    FULL STORY ==========================================================================
    Dogs have been faithful human companions ever since their domestication thousands of years ago. With various improvements in veterinary medicine
    in the past decades, their life expectancy has increased. However,
    an unfortunate side effect of this longevity, much like in humans, has
    been an increase in the occurrence of chronic and degenerative conditions.


    ==========================================================================
    In humans, modern efforts to fight such diseases have culminated in the development of regenerative therapies, largely based on stem cells. These "baby" cells have the potential to differentiate and mature into many specialized cell types -- called "pluripotency." By transplanting
    stem cells and guiding their differentiation into desired cell types, researchers are effectively able to regenerate damaged tissues, thereby reversing the course various complex diseases. Although this technology
    is widely studied in humans, the potential for stem cell therapy in dogs
    is lacking.

    To this end, a research team from Japan, led by Associate Professor Shingo Hatoya from Osaka Prefecture University, has been working on isolating
    "induced pluripotent stem cells" (iPSCs) from canine blood samples. iPSCs
    are a type of stem cell that can be "programmed" from a developed (or "differentiated") cell by introducing a specific set of genes into
    them. These genes code for proteins called "transcription factors,"
    which induce the change from a differentiated to a pluripotent stem cell,
    which then have the ability to mature into various cell types. iPSCs
    can proliferate very rapidly, providing a reliable supply of suitable
    stem cells for regenerative therapies. "We successfully established an efficient and easy generation method of canine iPSCs from peripheral blood mononuclear cells" explains Dr. Hatoya. He highlights the significance
    of these findings for veterinary science, stating he hopes that in
    the near future, "it may be possible to perform regenerative medicinal treatments in dogs." These findings were published in the journal Stem
    Cells and Development.

    The previous attempts by these scientists to generate iPSCs from canine
    blood cells, using viral "vectors" to deliver the pluripotency-inducing transcription factors, were not as effective as hoped. Therefore, in
    this study, they tested a different combination of inducing factors,
    which they believe were key to harvesting the full potential of these
    cells. Most importantly, the researchers needed to control how the
    reprogrammed cells replicated in the host body. Viral vectors that
    encode pluripotency-inducing transcription factors can be used to infect
    cells obtained from the blood and convert them into iPSCs; however,
    the researchers needed to be cautious: because these vectors integrate
    into the host genome, re-expression of these pluripotency factors in the
    host cell can cause tumor formation when these cells are transplanted in patients. To avoid this, the team developed "footprint-free" stem cells by using a particular type of viral vector that can generate iPSCs without
    genomic insertion and can be automatically "silenced" via "microRNAs"
    expressed by the cells. Then, they grew these cells in a special type
    of medium that contained various factors enhancing their pluripotency (including a "small-molecule cocktail"). Indeed, these cells grew and successfully developed germ layers (which form the basis of all organs).

    Fascinatingly, these findings have paved the way for an easy stem cell
    therapy technique for man's best friends. "We believe that our method
    can facilitate the research involving disease modeling and regenerative therapies in the veterinary field," says Dr. Hatoya. Furthermore, the
    authors also believe that additional research into regenerative therapies
    for canines might have some ripple effects for human medicine. "Dogs
    share the same environment as humans and spontaneously develop the same diseases, particularly genetic diseases." Translating findings from one
    field to another might mean veterinarians are able to find treatments,
    maybe even cures, for some of the diseases that still plague humanity.


    ========================================================================== Story Source: Materials provided by Osaka_Prefecture_University. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Kazuto Kimura, Masaya Tsukamoto, Miyuu Tanaka, Mitsuru Kuwamura,
    Manami
    Ohtaka, Ken Nishimura, Mahito Nakanishi, Kikuya Sugiura, Shingo
    Hatoya.

    Efficient Reprogramming of Canine Peripheral Blood Mononuclear Cells
    into Induced Pluripotent Stem Cells. Stem Cells and Development,
    2021; 30 (2): 79 DOI: 10.1089/scd.2020.0084 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/02/210203090512.htm

    --- up 7 weeks, 1 day, 7 hours, 57 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)