• Taking greenhouse gas analysis on the ro

    From ScienceDaily@1337:3/111 to All on Thu Dec 17 21:31:20 2020
    Taking greenhouse gas analysis on the road, er, rails
    Train-mounted sensors are a cost-effective way to monitor emissions over
    an entire city

    Date:
    December 17, 2020
    Source:
    University of Utah
    Summary:
    Since 2014, there have been research-grade suites of air quality
    instruments installed and maintained on light rail trains that move
    throughout the Salt Lake Valley every day. These mobile sensors,
    researchers estimate in a new study, cover the same area as 30
    stationary sensors, providing the Salt Lake Valley with a highly
    cost-effective way to monitor its greenhouse emissions and fill
    in gaps in emissions estimates.



    FULL STORY ========================================================================== Research-grade air quality sensors are costly -- around $40,000. For
    cities trying to monitor their greenhouse gas emissions, the cost
    may limit the number of sensors they can install and the data they
    can collect.


    ========================================================================== Unless. . .

    Since 2014, the University of Utah has maintained research-grade
    suites of air quality instruments installed on light rail trains that
    move throughout the Salt Lake Valley every day. These mobile sensors, researchers estimate in a new study, cover the same area as 30 stationary sensors, providing the Salt Lake Valley with a highly cost-effective
    way to monitor its greenhouse emissions and fill in gaps in emissions estimates. The study is published in Environmental Science & Technology.

    "Pollutant levels in the atmosphere are going to be rapidly changing
    in the coming decade as clean energy technologies are deployed," says
    Logan Mitchell, research assistant professor of atmospheric sciences,
    and a co-author of the study. "Cost-effective atmospheric monitoring will
    help policymakers understand what policies lead to reductions in pollutant levels, where there needs to be more focus, and if there are environmental inequalities emerging as some areas reduce their emissions faster than
    other areas." Taking the show on the road The upwind atmospheric area
    sampled by four current stationary air quality monitors (left) compared
    with the area sampled by a train-based mobile sensor.

    The story of mounting sensors on the trains of the Utah Transit
    Authority's TRAX system begins in 2009 with then-doctoral student Heather Holmes (now an associate professor of chemical engineering). Holmes
    installed a particulate matter sensor on a train but for only a short
    period of time.



    ==========================================================================
    When Mitchell arrived at the U as a postdoctoral scholar in 2013 he
    discussed reviving Holmes' project with faculty advisors Jim Ehleringer, distinguished professor of biology, and John Lin, professor of atmospheric sciences and a co- author of the current study. With support from UTA,
    Mitchell ran a preliminary study in 2014.

    They first test placed air inlet tubes out the window of an unoccupied
    driver's cab. "I noticed that there was a small CO2bump every time the
    TRAX train stopped at a train station," Mitchell says. "This confused
    me initially, but I realized that the inlet tubes sticking out of the
    driver window were actually picking up human respiration from people
    standing at the train platform waiting to board the train!" The test was
    a success, and Mitchell partnered with professor John Horel's research
    group to launch a full-fledged research effort to monitor air quality
    and greenhouse gases -- this time with the sensors on the roof of the
    train so they aren't affected by people waiting on the train platforms.

    Now the program has expanded to additional TRAX lines and ongoing state
    funding supports the air quality monitoring while additional funding
    from the National Oceanic and Atmospheric Administration supported this
    study on greenhouse gas emissions.

    Top-down emissions measurement The study evaluates the TRAX air sensors as
    a top-down measurement of greenhouse gas emissions. "Top-down" analysis
    means measuring the atmospheric concentration, and then figuring out
    where the emissions come from. Another approach, "bottom-up" analysis, inventories all the possible emissions sources and adds them together
    to estimate the total.



    ========================================================================== "Top-down measurements allow us to evaluate if the bottom-up emission inventories are accurate," says Derek Mallia, lead author of the study
    and research assistant professor of atmospheric sciences. "If an emission inventory is off by a little bit or is missing an emissions source, the top-down approach gives us a way to figure that out." NASA satellites can
    also be used to estimate top-down emission estimates for cities around the world, an effort Lin and his group are also pursuing. "These satellite measurements are useful for assessing whole cities and for cities that
    lack ground observations," Lin says, "but the TRAX-based sensors allow
    for more granularity in emissions throughout the city and can complement
    the space- based observations." Top-down measurements of this type over
    a large area can focus in on particular elements of a city's emissions inventory to identify ways that the inventory needs to change.

    "A really simple example of this would be looking at on-road emissions,"
    Mallia says. The researchers found underestimates of on-road emissions
    by bottom-up inventories, which if observed by only a stationary sensor
    near a single main road would suggest only potential underestimations
    for that particular road.

    But if on-road emissions are being underestimated consistently over an
    entire city, Mallia says, "fundamentally, this tells us that we are not accounting for something about on-road emissions, in general. This could
    be really important to understand as more and more people start driving electric vehicles that have zero tailpipe emissions." As cities work
    to reduce environmental inequalities, mobile air monitoring can also
    help monitor if some urban areas' air is improving faster than others,
    Mitchell adds.

    A model for cities to follow "The TRAX-based measurements, combined with
    the network of stationary sites, means that Salt Lake City is one of the best-instrumented cities in the world in terms of pollution observations,"
    Lin says.

    To the researchers' knowledge, air quality sensors have been installed on public transport platforms in only a handful of cities in Europe. But the
    same approach could be used in any city with similar light rail systems
    -- Portland, Oregon and Denver, for example. In cities with rail systems
    that run partially or entirely underground, sensors could be mounted on electric buses.

    The cost savings of such an approach is staggering. One research-grade
    mobile sensor costing $40,000, the authors find, can cover the same area
    as around 30 stationary sensors costing upwards of $1.2 million.

    "This excludes the manpower needed to maintain a 30-station network,
    which would be immense," Mitchell says. "Long story short -- based on
    our preliminary analysis, semi-continuous mobile measurements on public
    transit vehicles are a very cost-effective strategy for monitoring
    emissions in cities."

    ========================================================================== Story Source: Materials provided by University_of_Utah. Original written
    by Paul Gabrielsen.

    Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Derek V. Mallia, Logan E. Mitchell, Lewis Kunik, Ben Fasoli,
    Ryan Bares,
    Kevin R. Gurney, Daniel L. Mendoza, John C. Lin. Constraining Urban
    CO2 Emissions Using Mobile Observations from a Light Rail Public
    Transit Platform. Environmental Science & Technology, 2020; 54
    (24): 15613 DOI: 10.1021/acs.est.0c04388 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/12/201217140209.htm

    --- up 2 days, 7 hours, 58 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)