• Gaps in early surveillance of coronaviru

    From ScienceDaily@1337:3/111 to All on Fri Aug 21 21:30:24 2020
    Gaps in early surveillance of coronavirus led to record-breaking US
    trajectory

    Date:
    August 21, 2020
    Source:
    University of Notre Dame
    Summary:
    New research provides insight into how limited testing and gaps
    in surveillance during the initial phase of the COVID-19 epidemic
    resulted in so many cases going undetected.



    FULL STORY ==========================================================================
    As the United States exceeds 5 million reported coronavirus cases --
    the world's first country to do so -- epidemiologists have pinpointed
    what helped to set the country on this path.


    ========================================================================== Research from the University of Notre Dame estimates that more than
    100,000 people were already infected with COVID-19 by early March -- when
    only 1,514 cases and 39 deaths had been officially reported and before
    a national emergency was declared. The study provides insight into how
    limited testing and gaps in surveillance during the initial phase of
    the epidemic resulted in so many cases going undetected. The study was published in the Proceedings of the National Academy of Sciences.

    "We weren't testing enough," said Alex Perkins, associate professor in
    the Department of Biological Sciences, an expert in infectious disease epidemiology and population biology and the lead of the study. "The
    number of unobserved infections appears to be due to very low rates
    of case detection during a critical time, when the epidemic was really
    starting to take hold in this country. Part of it was the availability
    of testing, but another huge part was case definitions and the fact that
    they were overly restrictive early on." According to the Centers for
    Disease Control and Prevention, the first confirmed case of COVID-19 in
    the United States was reported in January. Early guidance on identifying possible infection included respiratory symptoms, and travel to Wuhan,
    China -- where an outbreak occurred in December 2019.

    "While we were focusing on people coming back from China, we were ignoring people coming from Europe, and actually quite a bit of the initial seeding
    of the virus into various parts of the United States came from Italy,"
    Perkins said.

    While awareness and concern over COVID-19 grew from January to March,
    it wasn't until Feb. 29 that Washington became the first state to
    declare a state of emergency -- closing schools and restaurants and
    imposing restrictions on large gatherings. By mid-March several states followed, but a lack of a coordinated national response created a number
    of variables as each state decided for itself how to react to a rising
    number of cases.



    ==========================================================================
    By focusing their analysis on the January to March timeframe, when little
    to no action had been taken on a wide scale, Perkins and his team were
    able to incorporate a constant into their models. While other studies
    provide a sense of how school closures and lockdowns slowed the spread
    of the virus, looking at transmission for the first three months of the
    year gave the epidemiologists a clearer picture of how the virus emerged
    and spread throughout the country so quickly.

    "It was such a crucial period in terms of how this situation started,"
    said Perkins. "We look at the United States now and compare it to
    other countries like South Korea or Germany, New Zealand or Vietnam,
    any number of countries who have done a much, much better job controlling transmission. The key differences really come down to the time period we examine in this study. Those countries had adequate surveillance up and
    running at that time, whereas we show that throughout most of February
    the United States missed the vast majority of infections that were already
    out there. This particular timeframe that we focus on is really important
    for figuring out how we got here in the first place." The study used a simulation model beginning on Jan. 1, using data reported by Johns Hopkins University on confirmed cases and deaths, accounting for asymptomatic infections, case fatality rates and local transmission. Perkins and his
    team first generated an estimate of total infections in the U.S.

    through March 12. The team then factored in how detection of symptomatic infections changed over time and estimated the number of unobserved
    infections during this time.

    A significant aspect of the analysis is the model's incorporation of many uncertainties that played out in the early days of the epidemic in the
    U.S., which Perkins said speaks to the inherent nature of a novel and
    emerging infectious disease. The number of unobserved and unreported
    infections also speaks to how critical containment strategies are when
    battling infectious diseases.

    "I think the fact that there were so many infections by the second half
    of February speaks to the importance of and what we could have done in
    terms of containment," said Perkins. "If you think about Ebola or SARS
    (severe acute respiratory syndrome) or other emerging infectious diseases, there have been cases that show up in the U.S. or other countries where officials move quickly to get ahead of them. They isolate those people,
    they do contact tracing -- and transmission is extinguished. I think a
    lot of us were hoping that would be the situation with this disease. By
    the time we got to February, the problem had grown so big, containing
    the virus wasn't possible." The potential for misdiagnosis and the
    limitations of surveillance are huge issues across infectious diseases, especially emerging infectious diseases, he added. As illustrated in
    the COVID-19 study, while public health officials must work quickly
    to understand how a new virus functions, without appropriate testing
    or coordinated response strategies the risk grows for infections to
    go unreported.

    Perkins is an affiliated member of Notre Dame's Eck Institute for Global
    Health and Environmental Change Initiative. Co-leads of the study include
    Sean M.

    Cavany and Sean M. Moore, and co-authors include Anita Lerch, Rachel
    J. Oidtman and Marya Poterek, all at Notre Dame.

    The study originally appeared prior to peer review on medRxiv, a preprint server for health sciences research.

    The study was supported by the National Science Foundation through a
    Rapid Response Research (RAPID) grant.


    ========================================================================== Story Source: Materials provided by University_of_Notre_Dame. Original
    written by Jessica Sieff. Note: Content may be edited for style and
    length.


    ========================================================================== Journal Reference:
    1. T. Alex Perkins, Sean M. Cavany, Sean M. Moore, Rachel J. Oidtman,
    Anita
    Lerch, Marya Poterek. Estimating unobserved SARS-CoV-2 infections in
    the United States. Proceedings of the National Academy of Sciences,
    Aug. 21, 2020; DOI: 10.1073/pnas.2005476117 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/08/200821155737.htm

    --- up 5 weeks, 2 days, 1 hour, 55 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)