• Cells communicate by doing the 'wave'

    From ScienceDaily@1337:3/111 to All on Wed Jul 22 21:30:24 2020
    Cells communicate by doing the 'wave'
    Kyoto University reverse engineers cellular mechano-chemical feedback
    system

    Date:
    July 22, 2020
    Source:
    Kyoto University
    Summary:
    A research team reports on a novel method of cell communication
    relying on 'mechano-chemical' signals to control cell movement.



    FULL STORY ========================================================================== Cells work around the clock to deliver, maintain, and control every aspect
    of life. And just as with humans, communication is a key to their success.


    ========================================================================== Every essential biological process requires some form of communication
    among cells, not only with their immediate neighbors but also to
    those significantly farther away. Current understanding is that this information exchange relies on the diffusion of signaling molecules or
    on cell-to-cell relays.

    Publishing in the journal Developmental Cell, a research team at Kyoto University's Graduate School of Medicine reports on a novel method of communication relying on 'mechano-chemical' signals to control cell
    movement.

    The research group focused on a fundamental pathway -- MAPK/ERK, or ERK
    pathway -- and were able to demonstrate how the movement of a single
    cell could trigger a cascading reaction resulting in the migration of
    a cell collective.

    "Mechanical and biochemical signals in cells fundamentally control
    everything from homeostasis, development, to diseases," explains Tsuyoshi Hirashima, leader of the study.

    "We knew from past experiments how vital the ERK pathway is in cell
    activity, but the mechanism of how it can propagate in a collection of
    cells was incomplete." MAPK/ERK is so fundamental that it exists in all
    cells, controlling a wide range of actions from growth and development to eventual cell death. The pathway is activated when a receptor protein on
    the cell surface binds with a signaling molecule, resulting in a cascade
    of proteins and reactions spreading throughout the cell's interior.

    Employing a live imaging technique that can visualize an individual
    cell's active ERK pathway, the team began observing the effects of cell movement. What they found was unexpected: when a cell began to extend
    itself, ERK activity increased, causing the cell to contract.

    "Cells are tightly connected and packed together, so when one starts contracting from ERK activation, it pulls in its neighbors," elaborates Hirashima. This then caused surrounding cells to extend, activating
    their ERK, resulting in contractions that lead to a kind of tug-of-war propagating into colony movement.

    "Researchers had previously proposed that cells extend when ERK
    is activated, so our results came as quite a surprise." The team
    incorporated these observations into a mathematical model, combining mechano-chemical regulations with quantitative parameters. The output demonstrated consistency with experimental data.

    "Our work clearly shows that the ERK-mediated mechano-chemical feedback
    system generates complicated multicellular patterns," concludes Hirashima.

    "This will provide a new basis for understanding many biological
    processes, including tissue repair and tumor metastasis."

    ========================================================================== Story Source: Materials provided by Kyoto_University. Note: Content may
    be edited for style and length.


    ========================================================================== Journal Reference:
    1. Naoya Hino, Leone Rossetti, Ariadna Mari'n-Llaurado', Kazuhiro Aoki,
    Xavier Trepat, Michiyuki Matsuda, Tsuyoshi
    Hirashima. ERK-Mediated Mechanochemical Waves Direct Collective
    Cell Polarization. Developmental Cell, 2020; 53 (6): 646 DOI:
    10.1016/j.devcel.2020.05.011 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2020/07/200722093450.htm

    --- up 1 week, 1 hour, 55 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1337:3/111)